Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Features and Applications</td>
<td>4</td>
</tr>
<tr>
<td>Design example</td>
<td>8</td>
</tr>
<tr>
<td>Materials</td>
<td>9</td>
</tr>
<tr>
<td>Type Number structure</td>
<td>14</td>
</tr>
<tr>
<td>Environmental aspects</td>
<td>14</td>
</tr>
<tr>
<td>Product range</td>
<td>14</td>
</tr>
<tr>
<td>General product data</td>
<td>15</td>
</tr>
<tr>
<td>Product specifications</td>
<td>16</td>
</tr>
<tr>
<td>Reliability and Quality Control</td>
<td>20</td>
</tr>
<tr>
<td>Soldering and recommended solder lands</td>
<td>21</td>
</tr>
<tr>
<td>Packing</td>
<td>22</td>
</tr>
<tr>
<td>Storage requirements</td>
<td>23</td>
</tr>
</tbody>
</table>
Fig.1 View inside an IIC10 model
Introduction

For the majority of today’s designs it is desirable to have low profile inductive components. This allows designers not only to make low profile equipment, but also to place the inductive device anywhere on the PCB without adaptations to the housing. This is especially true when the inductive component matches the height of other components on the board, for instance IC's which are usually about 3mm high.

One way to achieve this objective is to simply lower existing core designs like E- or RM cores. When these cores get really flat it becomes difficult to accommodate the windings, especially if these must be able to carry large currents.

Windings can be flattened to adapt them to the shape of the component, as in planar magnetics. In the fully integrated planar device the possibility to use the copper layer on the PCB as a winding is exploited for the first time.

Another way to do this is demonstrated in the new Integrated Inductive Component (IIC), presented in this brochure. This product consists of a rectangular ferrite sleeve with an inserted copper lead frame. This sleeve is pressed in one piece although the slot is only 0.75 mm high, and it can also comprise a partial airgap. The lead frame is surrounded by a moulding of a high tech resin to keep the leads together and to insulate them from the ferrite core. After insertion the leads are bent in a so-called gull wing shape to form contact pads, just like with most standard SMD IC’s. In fact, the finished product really looks like an IC from the outside. It closely resembles the SOT outline and can be handled by standard pick and place equipment as well as soldered together with other IC’s on the board.

The leads in the moulding form one half of a winding which is completed by a track on the PCB. In this way, depending on the PCB layout, one or more inductors with up to 10 turns can be constructed. The same product can be applied to make 1 inductor with 10 turns or 2 with 5 turns etc.

The IIC design can perform several magnetic functions, depending on the material and the presence of a partial airgap.

![Fig.2 Three basic principles to make a low profile inductive component.](image)

![Fig.3 PCB track examples.](image)
Applications

IIC with partial airgap

This product type has a partial airgap to improve energy storage capability. Its performance has all characteristics of a stepped choke. Possible magnetic functions are:

- power inductor
- output choke
- EMI-choke with bias

Power inductors are applied as output choke in switched mode power supplies, inductor in high frequencies DC/DC (buck/boost) converters or resonant inductors in resonant converters. Because of the limited number of turns the product will only be of interest for fairly high frequencies (≥ 200 kHz).

The curves of \(L \) as a function of DC bias exhibit the effect of a partial airgap. For comparison, curves for products with a complete airgap and without are shown in Fig.4. For all these applications saturation flux density should be as high as possible with low power losses. Therefore 3C30 is the ideal material here. However for very high frequencies (≥ 500 kHz) a better choice would be 3F4.

EMI-chokes often suffer from saturation when used without current compensation in line with elevated DC or AC bias currents. The design with a partial airgap avoids complete saturation to a large extend. The suppression effect remains at an acceptable level.

Features

- Inductive SMD component that looks like a standard IC outline (SOT).
- Windings are completed by PCB tracks.
- Automatic placement and soldering together with other IC's on the board.
- Suitable for reflow soldering.
- Wide range of magnetic functions can be realized with the same product, depending on track layout.
- Superior physical properties.
- Available in standard EIA and EIAJ tape-and-reel.
- Operating temperature -55°C to +150°C.

Fig.4 Inductance curve of an IIC choke with a partial airgap compared to the curves for products without and with a full airgap.

Cross-section of an IIC showing flux patterns and partial saturation.
IIC without partial airgap

This design is suitable for the following magnetic functions:

- power transformer
- signal transformer
- common-mode choke

Power transformer

IIC can perform as very flat power transformer in applications like high frequency DC/DC converters (> 500 kHz) with low voltages and low power levels. The product is best applied at low input voltages and high switching frequencies because of the limited number of turns. Although isolation voltage is specified as 500 V, the IIC10 should not be applied in AC/DC applications as safety isolation transformer. The short distance between the leads makes it unsuitable for that function.

There is a trend towards converters which bring down 5 V to 3.3 V or even 2 V as supply for special ICs. Especially in the case of a bifilar winding configuration leakage flux is low and coupling satisfactory for the transformer function. At frequencies above 500 kHz the most suitable material is 3F4.

For power inductors and transformers ferrite volume is one of the major parameters determining the throughput power of the device. For this reason IIC products in power materials have a standard height of 4 mm, but can also be produced as a 3 mm high version.

Signal transformer

For signal transformers (pulse or wideband) it is important to have a high primary inductance. This level controls low frequency performance. Our high permeability material 3E6 helps to reach the required levels in spite of the low number of turns. Required low leakage inductances can be obtained by means of a bifilar winding configuration (see Fig.7 on page 6).

Also in this application IIC10 is not suitable if a safety barrier is required.

![Fig.5 Throughput power capability of IIC10-14/4-3F4 when applied as a power transformer. Practical values will also depend on circuit topology and switching techniques used. Therefore only a range is indicated in the graph.](image1)

![Fig.6 Inductance of IIC10-14/4-3E6 (10 turns) as a function of frequency.](image2)
Common-mode choke

Made in our top quality suppression material 3S4 or the high permeability material 3E6, the design is ideal as common-mode choke in signal or supply lines, especially if these carry large currents. The sturdy lead frame will take almost any current surge without being damaged.

All sorts of signal lines in Telecom and EDP equipment require suppression of HF noise generated by internal digital processing. Requirements are a common-mode impedance of at least $100 \, \Omega$ over a very wide frequency range (10 - 1000 MHz) and, at the same time, a differential impedance of less than $10 \, \Omega$ at 1 MHz to allow the real signal to pass without too much damping. Especially with a bifilar winding configuration the coupling is excellent and differential damping will be low.

As expected 3S4 is the best material to obtain a high impedance over a wide frequency range. With 3E6 damping is already effective between 1 and 10 MHz. In combination with capacitors IIC can be effective as supply line filter also for even lower frequencies.

For common-mode chokes build height is very important since they are often used on boards together with IC’s. Therefore the 3S4 product can also be made with a height of only 3mm, equal to most standard IC’s.

Fig.7 Impedance curves of IIC10-14/4-3S4 connected as common-mode and differential-mode choke.

Fig.8 Unifilar recommended track pattern.

Fig.9 Bifilar recommended track pattern.
Saturable inductor

Saturable inductors can be used to regulate several independent outputs of an SMPS by blocking varying amounts of energy from the secondary of the transformer. The circuits required are both simple and economic and can be easily integrated.

Operating principles
When switch SW2 (Fig. 11), representing a small transistor, is open, no reset current can flow through the winding of the saturable inductor. Because the saturable inductor has a rectangular B-H loop (see Fig. 10), the flux remains at the high level B_r even when the driving field H has fallen to zero. When switch SW1 is closed the voltage across the inductor causes a current rise in the winding. There is a short delay (t_d) because the flux rises from B_r to B_s. After that the current sharply rises to its maximum value, limited only by the load impedance.

When in the next cycle switch SW2, is closed, a reset current can flow and is regulated by the transistor. Resetting to -H_c, for instance, causes some extra delay (t_b) because of the larger flux swing. Full reset causes a flux swing of almost 2B_s, resulting in a maximum delay (t_d + t_b) and the blocking of a part of the energy flowing from the transformer to the load.

In this way a reset current in the order of 100 mA can regulate load currents in the order of 10 A or more, depending on the layout of the saturable inductor. For this reason the described circuit is called a magnetic regulator or even magnetic amplifier. In the case of IIC the combined resistance in leads and tracks limits the throughput current to approximately 4 A when all 10 turns are used. In many cases less turns will be needed. Then some tracks can be connected in parallel, thereby increasing the maximum current level.

The performance of the material 3R1 is comparable to that of amorphous metal making it an excellent material for application in magnetic regulators. When 3R1 cores are driven exactly at their natural mechanical resonant frequencies a magneto-elastic resonance will occur. With large flux excursions and no mechanical damping, amplitudes can become so high that the maximum tensile stress of the ferrite is exceeded. Cracks or even breakage of the core could be the result. It is advised not to use the cores at their mechanical resonant frequencies or even subharmonics (e.g. half this resonant frequency). The resonant frequency of IIC10-14/4 is approximately 180 kHz.

Fig. 10 Schematic of flux excursions in a saturable inductor.

Fig. 11 Schematic of a saturable inductor and associated waveforms (with regulation)
Fig. 12 Basic diagram of a design example to demonstrate the versatility of the IIC concept.

For the completely worked out design of the DC/DC converter shown above, please refer to the Application Note “10 Watt DC/DC Converter using IIC Magnetics” (9398 239 03011)
Material characteristics

3C30 SPECIFICATIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_i</td>
<td>25 °C; ≤10 kHz; 0.1 mT</td>
<td>1800 ±20%</td>
<td></td>
</tr>
<tr>
<td>μ_a</td>
<td>100 °C; 25 kHz; 200 mT</td>
<td>5000 ±25%</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>100 °C; 10 kHz; 250 A/m</td>
<td>≥370</td>
<td>mT</td>
</tr>
<tr>
<td>P_V</td>
<td>100 °C; 25 kHz; 200 mT, 100 °C; 100 kHz; 100 mT</td>
<td>≤80, 100 °C; 100 kHz; 200 mT</td>
<td>kW/m³</td>
</tr>
<tr>
<td>ρ</td>
<td>DC; 25 °C</td>
<td>=2</td>
<td>Ωm</td>
</tr>
<tr>
<td>T_C</td>
<td>≥240</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>density</td>
<td></td>
<td>4800</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Complex permeability as a function of frequency

Initial permeability as a function of temperature

Amplitude permeability as a function of peak flux density.

Incremental permeability as a function of magnetic field strength.

Specific power loss as a function of peak flux density with frequency as a parameter.

Specific power loss for several frequency/flux density combinations as a function of temperature.
Material characteristics

3F4 SPECIFICATIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>25 °C; ≤10 kHz; 0.1 mT</td>
<td>900 ±20%</td>
<td></td>
</tr>
<tr>
<td>μ_a</td>
<td>100 °C; 25 kHz; 200 mT</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>25 °C; 10 kHz; 250 A/m</td>
<td>≥350</td>
<td>mT</td>
</tr>
<tr>
<td></td>
<td>100 °C; 10 kHz; 250 A/m</td>
<td>≥300</td>
<td>mT</td>
</tr>
<tr>
<td>P_v</td>
<td>100 °C; 1 MHz; 30 mT</td>
<td>≤200</td>
<td>kW/m³</td>
</tr>
<tr>
<td></td>
<td>100 °C; 3 MHz; 10 mT</td>
<td>≤320</td>
<td>kW/m³</td>
</tr>
<tr>
<td>ρ</td>
<td>DC; 25 °C</td>
<td>≥10</td>
<td>Ωm</td>
</tr>
<tr>
<td>T_C density</td>
<td></td>
<td>≥220</td>
<td>°C</td>
</tr>
<tr>
<td>density</td>
<td></td>
<td>≥4700</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Complex permeability as a function of frequency

Initial permeability as a function of temperature

Typical B-H loops

Amplitude permeability as a function of peak flux density.

Incremental permeability as a function of magnetic field strength.

Specific power loss as a function of peak flux density with frequency as a parameter.

Specific power loss for several frequency/flux density combinations as a function of temperature.

MBW034

MBW046

MBW017

MBW025

MBW056

MBW047
3E6 SPECIFICATIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>VALUE(1)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_i)</td>
<td>25 °C; (\leq 10) kHz; 0.1 mT</td>
<td>12000 ±20%</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>25 °C; 10 kHz; 250 A/ m 100 °C; 10 kHz; 250 A/ m</td>
<td>(=380)</td>
<td>mT</td>
</tr>
<tr>
<td>(\tan \delta/\mu_i)</td>
<td>25 °C; 10 kHz; 0.1 mT 25 °C; 30 kHz; 0.1 mT</td>
<td>(\leq 10 \times 10^{-6}) (\leq 30 \times 10^{-6})</td>
<td></td>
</tr>
<tr>
<td>(\eta_B)</td>
<td>25 °C; 10 kHz; 1.5 to 3 mT</td>
<td>(\leq 1 \times 10^{-3})</td>
<td>T⁻¹</td>
</tr>
<tr>
<td>(\rho)</td>
<td>DC; 25 °C</td>
<td>(=0.1)</td>
<td>Ωm</td>
</tr>
<tr>
<td>(T_C) density</td>
<td>(\geq 130)</td>
<td>°C</td>
<td>(\approx 4900)</td>
</tr>
</tbody>
</table>

Note
1. Measured on sintered, non-ground ring cores of dimensions \(\Omega14 \times \Omega9 \times 5 \) which are not subjected to external stresses.

![Complex permeability as a function of frequency](image1)

![Initial permeability as a function of temperature](image2)

![Typical B-H loops](image3)

![Incremental permeability as a function of magnetic field strength](image4)
Material characteristics

3S4 SPECIFICATIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_i</td>
<td>25 °C; \leq10 kHz; 0.1 mT</td>
<td>\approx1700</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>25 °C; 10 kHz; 250 A/m 100 °C; 10 kHz; 250 A/m</td>
<td>=300</td>
<td>mT</td>
</tr>
<tr>
<td>$</td>
<td>Z</td>
<td>^{(1)}$</td>
<td>25 °C; 3 MHz; 25 °C; 30 MHz; 25 °C; 100 MHz; 25 °C; 300 MHz;</td>
</tr>
<tr>
<td>ρ</td>
<td>DC, 25 °C</td>
<td>$=10^3$</td>
<td>Ωm</td>
</tr>
<tr>
<td>T_C</td>
<td></td>
<td>\geq110</td>
<td>°C</td>
</tr>
<tr>
<td>density</td>
<td></td>
<td>$=4800$</td>
<td>kg/m3</td>
</tr>
</tbody>
</table>

Note
1. Measured on a bead \varnothing5x \varnothing2 x 10 mm

Remark: This wideband EMI-suppression material is optimized for applications without bias currents at moderate temperatures (e.g. common-mode chokes).
Material characteristics

3R1 SPECIFICATIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_i)</td>
<td>25 °C; (\leq 10) kHz; 0.1 mT</td>
<td>800 ±20%</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>25 °C; 10 kHz; 250 A/m; 100 °C; 10 kHz; 250 A/m</td>
<td>(\geq 360)</td>
<td>mT</td>
</tr>
<tr>
<td>(B_r)</td>
<td>from 1 kA/m; 25 °C; (\leq 285)</td>
<td>mT</td>
<td></td>
</tr>
<tr>
<td>(H_c)</td>
<td>from 1 kA/m; 25 °C; (\leq 52)</td>
<td>A/m</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>DC; 25 °C; (\leq 23)</td>
<td>Ωm</td>
<td></td>
</tr>
<tr>
<td>(T_C)</td>
<td>Density</td>
<td>(\geq 230) kg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Warning:
When 3R1 cores are driven exactly at their natural mechanical resonant frequencies a magneto-elastic resonance will occur. With large flux excursions and no mechanical damping, amplitudes can become so high that the maximum tensile stress of the ferrite is exceeded. Cracks or even breakage of the core could be the result. It is advised not to drive the cores at their resonant frequencies or even subharmonics (e.g. half this resonant frequency).
Type Number structure

Type Numbers for these products consists of 3 parts:

1. Product type
2. Size (A/B)
3. Ferrite material

IIC10P - 14/4 - 3C30

1. Product Type
IIC: Integrated Inductive Component
10: Number of leads
P: Partial gap

2. Size A/B
A: width
B: height

Product Range
IIC10P-14/4-3C30
IIC10P-14/4-3F4
IIC10-14/4-3F4
IIC10-14/4-3E6
IIC10-14/4-3S4
IIC10-14/4-3R1

Environmental aspects

Ferrite
Our range of soft ferrites has the general composition MeFe₂O₄ where Me represents one or several of the divalent transition metals such as manganese (Mn), zinc (Zn), nickel (Ni), or magnesium (Mg).
To be more specific, all materials starting with digit 3 are manganese zinc ferrites based on the MnZn composition. Their general chemical formula is:
Mn₈ Zn(1-₈)Fe₂O₄
Materials starting with digit 4 are nickel zinc ferrites based on the NiZn composition. Their general chemical formula is:
Ni₈ Zn(1-₈)Fe₂O₄

Leadframe

Leadframe material:
copper, plated with tin-lead alloy (SnPb 85/15)

Moulding material:
liquid crystal polymer (LCP), flame retardant in accordance with UL 94V-0.

General warning rules
• With strong acids, the metals iron, manganese, nickel and zinc may be partially extracted.
• In the event of fire, dust particles with metal oxides will be formed.
• Disposal as industrial waste, depending on local rules and circumstances.
Effective core parameters

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ (l/A)</td>
<td>core factor (C1)</td>
<td>2.47</td>
<td>mm$^{-1}$</td>
</tr>
<tr>
<td>V_e</td>
<td>effective volume</td>
<td>338</td>
<td>mm3</td>
</tr>
<tr>
<td>l_e</td>
<td>effective length</td>
<td>28.9</td>
<td>mm</td>
</tr>
<tr>
<td>A_e</td>
<td>effective area</td>
<td>11.7</td>
<td>mm2</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
<td>~1.85</td>
<td>g</td>
</tr>
</tbody>
</table>

General data

R_{dc}:

- ~ 65 mΩ (25°C) and ~85 mΩ (100°C) for 10 turns including 20 solder joints (assuming 70 µm Cu PCB tracks)

Leadframe material:
copper, plated with tin-lead alloy (SnPb 85/15)

Solderability:
- compatible with reflow soldering
- IEC 68-2-58, part2, test Ta, method 1

Moulding material:
liquid crystal polymer (LCP), flame retardant in accordance with UL 94V-0.

Isolation voltage:
> 500 V$_{dc}$ between leads and between leads and ferrite core.

Isolation resistance:
> 100 MΩ between leads.

Inter winding capacitance:
2 windings of 5 turns
- unifilar ~ 5 pF
- bifilar ~ 10 pF
(depending on track layout)

Leakage inductance:
2 windings of 5 turns
- unifilar ~ 1.8 µH
- bifilar ~ 0.2 µH

Maximum continuous current (DC):
4 A (depending on thickness of copper tracks on PCB)

Maximum peak current:
10 A
Product specification IIC 10P-14/4-3C30

Electrical specification

Inductance, 10 turns, 100 kHz, no bias current:
92 μH ± 25%

Inductance, 10 turns, 100 kHz, bias current 1 A:
5 μH ± 25%

Power losses at 100 kHz, 100 mT, 100 °C:
≤ 30 mW

Product specification IIC 10P-14/4-3F4

Electrical specification

Inductance, 10 turns, 1 MHz, no bias current:
45 μH ± 25%

Inductance, 10 turns, 1 MHz, bias current 1 A:
5 μH ± 25%

Power losses at 1 MHz, 30 mT, 100°C:
≤ 70 mW
Product specification IIC 10-14/4-3F4

Electrical specification

Inductance per line, 1 MHz, no bias current:
0.45 µH ± 25%

Power losses at 1 MHz, 30 mT, 100°C:
≤ 70 mW

Product specification IIC 10-14/4-3E6

Electrical specification

Inductance per line, 10 kHz, no bias current:
6 µH ± 30%
Product specification IIC10-14/4-3S4

Electrical specification

Typical impedance per line at 100 MHz:
$Z_{\text{typ}} \approx 35 \, \Omega$
Minimum guaranteed value is typical -20%

Fig.19 Impedance curves of IIC10-14/4-3S4 with the number of turns as a parameter.

Fig.20 Impedance curves of IIC10-14/4-3S4 for a single inner and outer lead.

Fig.21 Impedance curves of IIC10-14/4-3S4 for a single outer lead with bias current as a parameter.

Fig.22 Impedance curves of IIC10-14/4-3S4 for 5 turns with bias current as a parameter.
Product specification IIC 10-14/4-3R1

Electrical specification

- **E·t product at 100 kHz, 800 A/m, 100 °C and 10 turns:**
 - $\geq 33 \text{ V} \cdot \mu\text{s}$ with a reset current of 70 mA.
 - $\leq 12 \text{ V} \cdot \mu\text{s}$ with a reset current of 0 mA.

The maximum current handling capacity of this product is mainly controlled by the heat dissipation in the copper tracks on the PCB. Therefore no absolute value can be specified.

Fig. 23 shows the thermal behaviour of an IIC10 on different PCB’s with 10 turns connected. Most magnetic regulator applications require less turns, for instance 7. In that case 3 turns of IIC10 and of the PCB tracks can be placed in parallel, which results in a decrease of the total resistance to almost half the original value. An optimized track layout is shown in Fig. 24. The effect on temperature rise on a 70 µm PCB is shown in Fig. 25.

![Graph showing thermal behaviour of IIC10 on different PCB's](image1)

Fig. 23 Temperature of IIC10-14/4-3R1 (10 turns) as a function of DC current with PCB copper layer thickness as a parameter.

![Graph showing temperature rise on a 70 µm PCB](image2)

Fig. 25 Temperature of IIC10-14/4-3R1 on a 70 µm PCB as a function of DC current with the number of turns as a parameter.

![Proposed low resistance PCB track layout for 7 turns](image3)

Fig. 24 Proposed low resistance PCB track layout for 7 turns.
Reliability and Quality Controls

PHILIPS COMPONENTS IIC's are submitted to extensive tests to ensure high quality, high reliability and complete customer satisfaction. A survey is given below.

<table>
<thead>
<tr>
<th>TEST</th>
<th>IEC NORM / REFERENCE</th>
<th>CONDITIONS</th>
</tr>
</thead>
</table>
| **A. Climatic**
 non operational & non packed | | |
| (1) Cold | IEC 68-2-1 Ab | 96 hours at -25˚C |
| (2) Dry Heat | IEC 68-2-2 Bb | 96 hours at +110˚C |
| (3) Damp Heat (cyclic) | IEC 68-2-30 Db | 21 days between +25 and +40˚C at 95% RH |
| (4) Damp Heat (steady state) | IEC 68-2-30 Ca | 21 days at +40˚C and 93%RH |
| (5) Thermal Cycling | IEC 68-2-14 Nb | 5 cycles between -55˚C and +150˚C |
| **B. Mechanical**
 non operational & non packed | | |
| (6) Vibration (sinusoidal) | IEC 68-2-6 Fc | frequency range 10-55-10 Hz
 amplitude 0.35 mm - 3 axis
 30 minutes per axis |
| (7) Bump | IEC 68-2-29 Eb | peak acceleration: 245 m/s² (25 g)
 number of bumps: 1000 per direction
 number of directions: 6 |
| (8) Shock | IEC 68-2-27 Ea | duration of pulse: 11 ms
 pulse shape: half-sine
 number of directions: 6
 number of shocks: 3 per direction
 peak acceleration: 490 m/s² (50 g) |
| (9) Robustness of Terminations | IEC 68-2-20 Ub | method 1 |
| (10) Resistance to Soldering Heat | IEC 68-2-20 Tb | method 1A
 5 ± 1 sec at 260 ± 5˚C |
| (11) Solderability | IEC 68-2-20 Ta
 (no extra aging e.g 15 hours at 155˚C) | first part method 1
 2 ± 0.5 sec at 235 ± 5˚C |
| (12) Flammability | UL 94 | V0 (0.81 mm) |

Requirements after Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Electrical (change L)</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(2)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(3)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(4)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(5)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(6)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(7)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(8)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(9)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(10)</td>
<td>≤ 5%</td>
<td>no changes</td>
</tr>
<tr>
<td>(11)</td>
<td>≥ 95% wetted surface</td>
<td>no changes</td>
</tr>
</tbody>
</table>
The advantages of good solderability of both components and substrate can be summarized as follows:

1. Lower soldering temperatures and shorter dwell times prevent damage to devices or dissolution of metallization. The thickness of inter-metallic zones is minimized, thus increasing mechanical integrity and providing a stable electrical connection.

2. It permits the use of a less active flux. Therefore the flux residue activity is low and cleaning the substrate may be unnecessary.

3. Better cost effectiveness by shorter production times owing to less re-working and repairs.

PHILIPS COMPONENTS Integrated Inductive Components are suitable for reflow soldering. Recommended temperature profiles for both methods are given below.

For repairing soldered joints, recommended settings 350°C, within 5 seconds.

Fig.26 Recommended temperature profile for reflow soldering.

Recommended solder lands

Fig.27 Recommended solder lands.
PHILIPS COMPONENTS IIC’s are delivered taped and reeled, ready for use in automatic pick-and-place machines, according to IEC 286-B and EIA 481-2.

Reel
Reels size is 330mm (13 inch), with approximately 1000 products.

Packing quantities

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PACKING QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIC10-14/4</td>
<td>1000</td>
</tr>
<tr>
<td>IIC10P-14/4</td>
<td>1000</td>
</tr>
</tbody>
</table>

Fig.28 Dimensions of reel
Storage requirements

Storage requirements advised here should be observed in order to ensure the soldering of the exposed electrode:

- Maximum ambient temperature shall not exceed 40°C. Storage temperature higher than 40°C could result in deformation of packaging materials.
- Maximum relative humidity recommended for storage is 70%. High humidity with high temperature can accelerate the oxidation of the tin-lead plating on the termination and reduce the solderability of the components.
- Products shall not be stored in environments with the presence of harmful gases containing sulfur or chlorine.
Magnetic Products NAFTA Sales Offices

Alabama Over and Over, Inc., Charlotte, NC (708) 583-9100
Alaska Eclipse Marketing Group, Redmond, WA (206) 885-6991
Arizona Harper and Two, Tempe, AZ (602) 804-1290
Arkansas Philips Components, Willoughby, OH (440) 269-8585
California - Northern Criterion Sales, Santa Clara, CA (408) 988-6300
California - Southern Harper and Two, Signal Hill, CA (801) 264-8050
Colorado Philips Components, Willoughby, OH (440) 269-8585
Connecticut Philips Components, Woburn, MA (617) 932-4748
Delaware Philips Components, Woburn, MA (617) 932-4748
Florida Over and Over, Charlotte, NC (704) 583-9100
Georgia Over and Over, Charlotte, NC (704) 583-9100
Hawaii Harper and Two, Signal Hill, CA (310) 424-3030
Idaho - Northern Eclipse Marketing Group, Redmond, WA (206) 885-6991
Idaho - Southern Electrodyne, Inc., Salt Lake City, UT (801) 264-8050
Illinois - Northern Philips Components, Willoughby, OH (440) 269-8585
Illinois - Quad Cities Lorenz Sales, Cedar Rapids, IA (319) 377-4666
Illinois - Southern Lorenz Sales, St. Louis, MO (314) 997-4558
Indiana - Northern Corrao Marsh, Fort Wayne, IN (219) 482-2725
Indiana - Central and Southern Corrao Marsh, Greenfield, IN (317) 462-4446
Iowa - All except Quad Cities Lorenz Sales, Cedar Rapids, IA (319) 377-4666
Kansas - Northeast Lorenz Sales, Overland Park, KS (913) 469-1312
Kansas - All except Northeast Lorenz Sales, Wichita, KS (316) 721-0500
Kentucky Corrao Marsh, Greenfield, IN (317) 462-4446
Louisiana Philips Components, Willoughby, OH (440) 269-8585
Maine Philips Components, Woburn, MA (617) 932-4748
Maryland Philips Components, Willoughby, OH (440) 269-8585
Massachusetts Philips Components, Woburn, MA (617) 932-4748
Michigan Philips Components, Willoughby, OH (440) 269-8585
Minnesota Electronic Component Sales, Minneapolis, MN (612) 946-9510
Mississippi Over and Over, Charlotte, NC (704) 583-9100
Missouri - Eastern Lorenz Sales, St. Louis, MO (314) 997-4558
Missouri - Western Lorenz Sales, Overland Park, KS (913) 469-1312
Montana Electrodyne, Inc., Salt Lake City, UT (801) 264-8050
Nebraska Lorenz Sales, Cedar Rapids, IA (319) 377-4666
Nevada - Central and Northern Criterion Sales, Santa Clara, CA (408) 988-6300
Nevada - Southern Harper and Two, Tempe, AZ (602) 804-1290
New Hampshire Philips Components, Woburn, MA (617) 932-4748
New Jersey Philips Components, Woburn, MA (617) 932-4748
New Mexico Harper and Two, Tempe, AZ (602) 804-1290
New York - Western Philips Components, Willoughby, OH (440) 269-8585
New York - All other Philips Components, Woburn, MA (617) 932-4748
North Carolina Over and Over, Charlotte, NC (704) 583-9100
North Dakota Electronic Component Sales, Minneapolis, MN (612) 946-9510
Ohio Philips Components, Willoughby, OH (440) 269-8585
Oklahoma Philips Components, Willoughby, OH (440) 269-8585
Oregon Eclipse Marketing Group, Beaverton, OR (503) 642-1661
Pennsylvania - Western Philips Components, Willoughby, OH (440) 269-8585
Pennsylvania - Eastern Philips Components, Woburn, MA (617) 932-4748
Rhode Island Philips Components, Woburn, MA (617) 932-4748
South Carolina Over and Over, Charlotte, NC (704) 583-9100
South Dakota Electronic Component Sales, Minneapolis, MN (612) 946-9510
Tennessee Over and Over, Charlotte, NC (704) 583-9100
Texas Philips Components, Willoughby, OH (440) 269-8585
Utah Electrodyne, Inc., Salt Lake City, UT (801) 264-8050
Vermont Philips Components, Woburn, MA (617) 932-4748
Virginia Philips Components, Willoughby, OH (440) 269-8585
Washington Eclipse Marketing Group, Redmond, WA (206) 885-6991
Washington DC Philips Components, Willoughby, OH (440) 269-8585
West Virginia Philips Components, Willoughby, OH (440) 269-8585
Wisconsin Philips Components, Willoughby, OH (440) 269-8585
Wyoming Electrodyne, Inc., Salt Lake City, UT (801) 264-8050
Canada Philips Components, Scarborough, ON (416) 292-5161
Mexico Philips Components, El Paso, TX (915) 772-4020
Puerto Rico Max Anderson Co., Caperra Heights, PR (809) 783-6544
Virgin Islands Max Anderson Co., Caperra Heights, PR (809) 783-6544
Philips Components – a worldwide company

Austria: Philips Components Grund GmbH, VIENNA, Tel. +43 1 220 500, Fax. +43 1 220 507
Australia: Philips Components Pty Ltd., NORTH RYEDE, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Belarus: Philips Office Belarus, MINSK, Tel. +375 172 200 924/733, Fax. +375 172 200 773
Benelux: Philips Nederland B.V., EINDHOVEN, NL, Tel. +31 40 273 749, Fax. +31 40 2788 399
Brazil: Philips Components, SÃO PAULO, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Canada: Philips Components, OTTAWA, ON, Tel. +1 613 996 1960, Fax. +1 613 996 1966
China: Philips Components Ltd., SHANGHAI, Tel. +86 21 6354 1087, Fax. +86 21 6354 1060
Croatia: Philips Electronic D.O.O., ZAGREB, Tel. +385 1 481 394, Fax. +385 1 481 395
Denmark: Philips Components A/S, COPENHAGEN S, Tel. +45 32 883 333, Fax. +45 31 571 949
Finland: Philips Components, ESPOO, Tel. +358 9 615 800, Fax. +358 9 615 8051
France: Philips Components, SURESNES, Tel. +33 1 4999 6161, Fax. +33 1 4999 6493
Germany: Philips Components GmbH, HAMBURG, Tel. +49 40 2489-0, Fax. +49 40 2489 1400
Greece: Philips Hellas S.A., TAVROS, Tel. +30 1 4894 239, Fax. +30 1 4814 240
Hong Kong: Philips Hong Kong, KOWLOON, Tel. +852 2784 3000, Fax. +852 2784 3003
India: Philips India Ltd., MUMBAI, Tel. +91 22 4930 311, Fax. +91 22 4930 966/4950 304
Indonesia: Philips Components, JAKARTA, Tel. +62 21 790 0404, Fax. +62 21 794 0080
Ireland: Philips Components, DUBLIN, Tel. +353 1 7640 203, Fax. +353 1 7640 210
Israel: Philips Components, TEL AVIV, Tel. +972 3 6490 444, Fax. +972 3 6491 007
Italy: Philips Components S.r.l., MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Japan Ltd., TOKYO, Tel. +81 3 3740 5135, Fax. +81 3 3740 5035
Korea (Republic of): Philips Components, SEOUL, Tel. +82 2 709 1472, Fax. +82 2 709 1480
Malaysia: Philips Malaysia SDN Berhad, COMPONENTS DIVISION, PULAU PINANG, Tel. +60 3 770 5213, Fax. +60 3 757 4880
Mexico: Philips Components, EL PASO, U.S.A., Tel. +52 915 772 4020, Fax. +52 915 772 4332
New Zealand: Philips New Zealand Ltd., AUCKLAND, Tel. +64 9 815 4000, Fax. +64 9 849 7811
Norway: Philips Components, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd., KARACHI, Tel. +92 21 587 4641-49, Fax. +92 21 577 035/92 21 587 4546
Philippines: Philips Semiconductors Philippines Inc., METRO MANILA, Tel. +63 2 816 6345, Fax. +63 2 817 3474
Poland: Philips Poland Sp. z.o.o., WARSZAWA, Tel. +48 22 612 2594, Fax. +48 22 612 2327
Portugal: Philips Portugal, LÍDA A VELHA, Tel. +351 1 416 3160/31333, Fax. +351 1 416 3174/3166 3366
Russia: Philips Russia, MOSCOW, Tel. +7 95 755 6918, Fax. +7 95 755 6919
Singapore: Philips Singapore Pte Ltd., SINGAPORE, Tel. +65 350 2000, Fax. +65 355 1758
South Africa: Philips Components, JOHANNESBURG, Tel. +27 11 470 5911, Fax. +27 11 470 5494
Spain: Philips Components, BARCELONA, Tel. +34 93 301 63 12, Fax. +34 93 301 42 43
Sweden: Philips Components, STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Philips Components, ZURICH, Tel. +41 1 488 22 11, Fax. +41 1 481 7730
Taiwan: Philips Taiwan Ltd., TAIPEI, Tel. +886 2 2134 2900, Fax. +886 2 2134 2929
Thailand: Philips Components (Thailand) Ltd., BANGKOK, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Philips Components, ANTALYA, Tel. +90 212 279 2770, Fax. +90 212 280 7467
United Kingdom: Philips Components Ltd., DORKING, Tel. +44 1306 512 000, Fax. +44 1306 512 345
United States:
• Display Components, ANN ARBOR, MI, Tel. +1 734 996 9400, Fax. +1 734 761 2776
• Magnetic Products, SAUGERTIES, NY, Tel. +1 914 246 2811, Fax. +1 914 246 0487
• Passive Components, SAN JOSE, CA, Tel. +1 408 570 5900, Fax. +1 408 570 5700
Yugoslavia (Federal Republic of): Philips Components, BELGRADE, Tel. +381 11 625 344/373, Fax. +381 11 635 777
Internet:
• Display Components: www.dc.comp.philips.com
• Passive Components: www.passives.comp.philips.com
For all other countries apply to:
Philips Components, Building BF-1, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40-27 23 903.

COD19 © Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.